
MTH 508/508: Midterm solutions

1. For n ≥ 1, consider the unitary group defined by

U(n) = {A ∈ GL(n,C) : A∗ = A−1}

and the special unitary group defined by

SU(n) = {A ∈ U(n) : det(A) = 1.}

(a) Show that U(n) is a Lie subgroup of GL(n,C) of dimension n2.

(b) Show that SU(n) is a compact Lie subgroup of U(n) of dimension n2 − 1.

Solution. (a) Since C is a 2-dimensional smooth manifold and GL(n,R) is an
n2-dimensional Lie group, it follows that GL(n,C) is a 2n2-dimensional smooth
Lie group (Verify this!). Consider the map f : GL(n,C) → GL(n,C) defined
by f(A) = AA∗. Clearly, f is smooth as all of its component functions are
polynomials. Moreover, f has constant rank n2 in GL(n,C) (Verify this!). By
the Regular Value Theorem, we have F−1({In}) = {A ∈ GL(n,C) : AA∗ = In} =
U(n) is an n2-dimensional regular closed submanifold of GL(n,C). By Theorem
1.3.1 (iv) and fact that U(n) < GL(n,C), it follows that U(n) is a Lie subgroup.
Furthermore, we note that U(n) is a subspace of Mn(C) ∼= Cn2 ∼= R2n2

, which is
endowed with a metric induced by the matrix norm ∥A∥ =

√
tr(A∗A). Thus, for

any A ∈ U(n), we have

∥A∥ =
√

tr(A∗A) =
√
tr(In) =

√
n,

which shows U(n) is bounded. Since U(n) is a closed and bounded subspace of
an Euclidean space Mn(C) ∼= R2n2

, it is compact.

(b) First, we note that smooth map det : GL(n,C) → C∗ has constant rank 1
(Verify this!). Consequently, det |U(n) : U(n) → C∗ has constant rank 1. By the
Regular Value Theorem, Theorem 1.3.1 (iv) and the fact that SU(n) < U(n), it
follows that SU(n) = det−1({1}) is a closed submanifold and a Lie subgroup of
U(n) of dimension n2−1. Since U(n) is compact, it follows that SU(n) is compact.

2. The complex projective n-space, denoted by CP n, is the set of all 1-dimensional
complex-linear subspaces of Cn+1, with the quotient topology inherited from the
natural projection π : Cn+1 \ {0} → CP n.

(a) Show that π is a smooth submersion.

(b) Show that CP n is a compact 2n-dimensional smooth manifold. [Hint: Recall
the smooth structure in RP n.]

(c) Show that that the map G : Cn → CP n defined by

G(z1, . . . , zn) = [z1, . . . , zn, 1]

is a diffeomorphism onto a dense subset of CP n.

Solution. (b) Note that CP n is Hausdorff and second-countable (Verify this!). As
in case of RP n, the complex projective n-space CP n is a differentiable n2-manifold
with the structure determined by the coordinate neighborhoods {(Ui, φi) : 1 ≤
i ≤ n+ 1}, where:

Ui = {π(Ūi) : Ūi = {x ∈ Cn+1(∼= R2n+2) : xi ̸= 0}}



and φi : Ui → Cn(∼= R2n) is defined by

φi(z1, . . . zn+1) =

(
z1
zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn+1

zi

)
.

Though, for convenience, these neighborhoods have been described in complex
coordinates, it is straightforward to express them in real coordinates. (Verify
this!)

It remains to prove the compactness of CP n. First, we note that there is a natural
properly discontinuous action S1×S2n+1(⊂ Cn) → S2n+1 given by (eiθ, (z1, . . . , zn)) 7→
(eiθz1, . . . e

iθzn). We see that CP n is orbit space of this action, that is, CP n ≈
S2n+1/S1 (Verify this!). Since the induced quotient map S2n+1 → CP n is contin-
uous and S2n+1 is compact, it follows that CP n is compact.

(a) For p = (z1, . . . , zn+1) ∈ Cn+1 \ {0}, let π(p) ∈ Ui for some i so that

(φi ◦ π)(p) =
(
z1
zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn+1

zi

)
.

Then the Jacobian D(φi ◦ π)(p) (of complex partial derivatives) at p is a matrix
n × (n + 1) complex matrix in that has rank n (Verify this!). Therefore, π is a
smooth submersion.

(c) First, we establish the smoothness of G. For each z = (z1, . . . , zn) ∈ Cn,
we consider the coordinate neighborhood (Cn, idCn) and coordinate neighborhood
of G(z) = [z1, . . . , zn, 1] given by (Un+1, φn+1), where Un+1 = {[w1, . . . , wn+1] ∈
CP n : wn+1 ̸= 0}) and φn+1([w1, . . . , wn+1]) = ( w1

wn+1
, . . . , wn

wn+1
) ∈ Cn. Then,

we see that φn+1 ◦ G ◦ idCn(w1, . . . , wn) = (w1, . . . , wn), which is clearly smooth.
Hence, it follows that G is smooth. Moreover, we have that G−1([w1, . . . , wn+1]) =
( w1

wn+1
, . . . , wn

wn+1
), which is smooth. Thus, G is a diffeomorphism.

To show that G(Cn) is dense, it suffices to show that CP n \ G(Cn) ⊂ G(Cn).
Consider a typical point [z1, . . . , zn, 0] ∈ CP n \G(Cn) (Why is a typical point of
this form?). Since (z1, . . . , zn, 1/n) → (z1, . . . , zn, 0) in Cn+1 and π is continuous,
it follows that: [z1, . . . , zn, 1/k] → [z1, . . . , zn, 0]. But we have

[z1, . . . , zn, 1/k] = [kz1, . . . , kzn, 1] = G(kz1, . . . , kzn),

which implies that G(kz1, . . . , kzn) → [z1, . . . , zn, 0]. Therefore, it follows that
[z1, . . . , zn, 0] ∈ G(Cn).

3. For any X ∈ GL(n,R), show that TX(GL(n,R)) ∼= Mn(R). [Hint: Use the
continuity of det : Mn(R) → R to find a path γ : (−ϵ, ϵ) → GL(n,R) such that
γ(0) = In and γ′(t) = B ∈ Mn(R).]
Solution. It suffices to determine the tangent space at In ∈ GL(n,R) (Why).
Since det : Mn(R) → R is continuous, there exists ϵ > 0 such that for all A ∈
Mn(R) with ∥A∥ < ϵ, we have det(In+H) ̸= 0. Hence, given a matrix A ∈ Mn(R),
there exits ϵA > 0 such that for t ∈ (−ϵA, ϵA), we have det(In + tA) ̸= 0. Now,
for A ∈ Mn(R), consider the smooth path γ : (−ϵA, ϵA) → GL(n,R) given by
γ(t) = In + tA. Then γ(0) = In and γ′(0) = A ∈ Mn(R). Since GL(n,R) is an
n2-dimensional smooth submanifold of Mn(R) ≈ Rn2

, it follows from 1.1.2(vii) of
the Lesson Plan that TIn(GL(n,R)) ∼= Mn(R) (Verify this!).



4. Show that there exists a smooth vector field on S2 that vanishes at exactly one
point.

Solution. Let N,S denote the north and south poles of S2. Let φ1 : S2 −
{N} → R2 (resp. φ2 : S2 − {N} → R2) be the stereographic projections from
the north (resp. south) poles of S2. First, we note that (S2 − {N}, φ1) and
(S2−{S}, φ2) determine a smooth structure on S2 (Verify this!). For i = 1, 2, let
(ui, vi) represent the stereographic coordinates with respect φi. We consider the
basis element ∂

∂u1
of R2. Using the change of basis formula in 2.1 (xii) (a) of the

Lesson Plan, we have

∂

∂u1

= (v22 − u2
2)

∂

∂u2

− (2u2v2)
∂

∂v2
.

(Verify this!). We now define a vector field X : S2 → R2 defined by X(p) = Xp,
where:

Xp =

(φ1)
−1
∗

(
∂

∂u1

)
, if p ∈ S2 − {N}, and

(φ2)
−1
∗

(
(v22 − u2

2)
∂

∂u2
− (2u2v2)

∂
∂v2

)
, if p ∈ S2 − {S}.

Note that the vector field X is smooth, XN = 0, and Xp ̸= 0 for p ∈ S2 \ {N}, as
desired. (Verify this!)


